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Abstract
We introduce a generalization of the Heisenberg algebra which is written in
terms of a functional of one generator of the algebra, f (J0), that can be any
analytical function. When f is linear with slope θ , we show that the algebra
in this case corresponds to q-oscillators for q2 = tan θ . The case where f is a
polynomial of ordern inJ0 corresponds to ann-parameter deformed Heisenberg
algebra. The representations of the algebra, when f is any analytical function,
are shown to be obtained through the study of the stability of the fixed points of
f and their composed functions. The case when f is a quadratic polynomial in
J0, the simplest nonlinear scheme which is able to create chaotic behaviour, is
analysed in detail and special regions in the parameter space give representations
that cannot be continuously deformed to representations of Heisenberg algebra.

PACS number: 0365F

1. Introduction

Quantum algebras first appeared in the algebraic Bethe ansatz approach to quantum integrable
one-dimensional models [1]. Since then, there have been several attempts to apply them in a
broad range of physical phenomena [2].

Associated with the omnipresent harmonic oscillator there is an algebra known as the
Heisenberg algebra. The simple structure of this algebra, that is described in terms of creation
and annihilation operators, and its particle interpretation has promoted it to a paradigmatic tool
in the second quantization approach.

A connection between these two topics appeared soon after the discovery of quantum
algebras, when it was found out that a generalization of the Heisenberg algebra, known as q-
oscillators, was necessary in order to realize suq(2) through the Jordan–Schwinger method [3].

Guided, in part, by the wide range of physical applicability of the Heisenberg algebra there
have been efforts in the last 10 years to analyse possible physical relevance of q-oscillators or
deformed Heisenberg algebras [4]. The expected physical properties of toy systems described
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by these generalized Heisenberg algebras were analysed and indications on how to solve an
old puzzle in physics were obtained [5].

Recently, an algebra, called logistic algebra, that is a generalization of the Heisenberg
algebra where the eigenvalues of one generator of the algebra (the one that generalizes the
number operator) are given by functional iterations of the logistic function, was introduced.
This algebra has finite-and infinite-dimensional representations associated with the cycles of
the logistic map and infinite-dimensional representations related to the chaotic band [6, 7].

A quantum solid Hamiltonian whose collective modes of vibration are described by
oscillators satisfying the logistic algebra was constructed and the thermodynamic properties of
this model in the two-cycle and in a specific chaotic region of the logistic map were analysed.
It is interesting to mention that in the chaotic band this model shows a curious hybrid behaviour
mixing classical and quantum behaviour, showing how a quantum system can present a non-
standard quantum behaviour [7].

In this paper, a generalization of the logistic algebra is constructed in such a way that the
eigenvalues of one generator are given by a functional iteration of a starting number. This
functional could be any analytical function, but, in order to study the properties of this algebra
in detail, this function is taken as a polynomial of order n.

When the functional, f (J0), is linear in J0, where J0 is the Hermitian generator of
the algebra, i.e. f (J0) = r J0 + s, r = q2 is shown to correspond to the q-deformed
Heisenberg algebra or q-oscillators. The general case, f (J0) = ∑n

i=0 riJ
i
0 , is an n-parameter

deformed Heisenberg algebra. This algebra is, therefore, a multi-parametric deformation of
the Heisenberg algebra.

The representation theory is presented in detail for the linear and quadratic cases since they
are the paradigmatic ones. It is shown that the essential tool in order to find the representations
of the algebra is the analysis of the stability of the fixed points of the polynomial f and their
composed functions.

Related to the cycles of period 1, 2, 4, . . . there are finite- and infinite-dimensional
representations of the algebra. The weights of the finite-dimensional representations are given
exactly by the lowest values of the cycles.

In the next section we present the general algebra and the general representation theory.
In section 3 we analyse the linear case, its representations and its connection to q-oscillators.
The nonlinear case or two-parameter deformed Heisenberg algebra is presented in section 4,
where the essential role played by the analysis of the stability of the fixed points of the
polynomial f and their composed functions in order to obtain the finite- and infinite-
dimensional representations of the algebra becomes evident. In section 5 we present our
final comments and also introduce a generalization of su(2) in the sense discussed in this
paper.

2. Generalized Heisenberg algebra

Let us consider an algebra generated by J0, J± described by the relations

J0 J+ = J+ f (J0) (1)

J− J0 = f (J0) J− (2)[
J+, J−

] = J0 − f (J0). (3)

By hypothesis, J− = J
†
+ and J

†
0 = J0, and f (J0) is a general analytic function of J0. The

case where f (J0) = r J0 (1 − J0) was analysed in [6] and [7]. The above algebra relations are
constructed in order that the eigenvalues of operator J0 are given by an iteration of an initial
value as will be clear in a moment.
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Let us now show that the operator

C = J+ J− − J0 = J− J+ − f (J0) (4)

is a Casimir operator of the algebra. Using the algebraic relations in equations (1)–(3) it is
easy to see that

[C, J0] = [
C, J±

] = 0 (5)

i.e. C is one Casimir operator of the algebra.
We start now analysing the representation theory of the algebra when the function f (J0)

is a general analytic function of J0. In this section we obtain the general equations for an
n-dimensional representation and in the next sections we solve these equations for linear and
quadratic polynomials f (J0), finding the finite- and infinite-dimensional representations for
the linear and quadratic cases that are the paradigmatic ones.

We assume we have an n-dimensional irreducible representation of the algebra given in
equations (1)–(3). The Hermitian operator J0 can be diagonalized. Consider the state |0〉 with
the lowest eigenvalue of J0

J0 |0〉 = α0 |0〉. (6)

For each value of α0 and the parameters of the algebra we have a different vacuum that for
simplicity will be denoted by |0〉. Moreover, it will be clear in the next sections, when we
shall solve the representation theory for the linear and quadratic polynomials f (J0), that the
allowed values of α0 depend on the parameters of the algebra.

Let |m〉 be a normalized eigenstate of J0,

J0|m〉 = αm|m〉. (7)

Applying equation (1) to |m〉 we have

J0(J+|m〉) = J+f (J0)|m〉 = f (αm)(J+|m〉). (8)

Thus, we see that J+|m〉 is a J0 eigenvector with eigenvalue f (αm). Starting from |0〉 and
applying J+ successively to |0〉 we create different states with the J0 eigenvalue given by

J0
(
Jm

+ |0〉) = f m(α0)
(
Jm

+ |0〉) (9)

where f m(α0) denotes the mth iterate of f . Since the application of J+ creates a new vector,
whose respective J0 eigenvalue has iterations of α0 through f increased by one unit, it is
convenient to define the new vectors Jm

+ |0〉 as proportional to |m〉 and we then call J+ a raising
operator. Note that

αm = f m(α0) = f (αm−1) (10)

where m denotes the number of iterations of α0 through f .
Following the same procedure for J−, applying equation (2) to |m + 1〉, we have

J−J0|m + 1〉 = f (J0) (J−|m + 1〉) = αm+1 (J−|m + 1〉) . (11)

This shows that J−|m + 1〉 is also a J0 eigenvector with eigenvalue αm. Then, J−|m + 1〉 is
proportional to |m〉, showing that J− is a lowering operator.

Since we consider α0 the lowest J0 eigenvalue, we require

J− |0〉 = 0. (12)

As was shown in [7], depending on the function f and its initial value α0, it may happen that
the J0 eigenvalue of state |m + 1〉 is lower than that of state |m〉. Thus, as we exemplify in
section 4 of this paper, given an arbitrary analytical function f (and its associated algebra in
equations (1)–(3)) in order to satisfy equation (12), the allowed values of α0 are chosen in
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such a way that the iterations f m(α0) (m � 1) are always bigger than α0. Then, equation (12)
must be checked for every function f , giving consistent vacua for specific values of α0. This
analysis is made in sections 3 and 4 where we find the parameter regions with consistent
representations.

In general we obtain

J0 |m− 1〉 = f m−1(α0) |m− 1〉 m = 1, 2, . . . (13)

J+ |m− 1〉 = Nm−1 |m〉 (14)

J− |m〉 = Nm−1 |m− 1〉 (15)

where N2
m−1 = f m(α0) − α0. We observe that if we put m = 0 in equation (15) then N−1 is

equal to zero, which is consistent with equation (12). Equations (13)–(15) are easily proven
by induction. In order to verify equations (13)–(15) for m = 1, apply equation (1) to the state
vector |0〉 obtaining J0 (J+|0〉) = f (α0) (J+|0〉). Thus, we define |1〉 ≡ 1

N0
J+|0〉 where N0 is

a constant to be determined. It is easy to see that J0|1〉 = f (α0)|1〉. The constant N0 can be
determined by imposing that the state vector |1〉 has unit norm and, with the use of equation (3),
we obtain N2

0 = f (α0)− α0. As the last step of this check apply equation (3) to the state |0〉.
Using equations (6) and (12) we obtain J−|1〉 = N0|0〉. Then, equations (13)–(15) are verified
for m = 1.

Now, suppose equations (13)–(15) are valid for m. Apply J0 to equation (14) and use
equation (1) on the left-hand side; this gives

J0 |m〉 = f m(α0) |m〉. (16)

Applying equation (1) to the state |m〉 and using equation (16) we are allowed to suppose that
there exists a state vector |m + 1〉 such that

|m + 1〉 = 1

C(m)
J+|m〉 (17)

whereC(m) is a constant. This constant is determined by imposing that the state vector |m+1〉
has unit norm

1 = 〈m + 1|m + 1〉 = 1

C(m)2
〈m|J− J+|m〉

= 1

C(m)2

[〈m|J+ J−|m〉 + 〈m|(−J0 + f (J0))|m〉]
= 1

C(m)2

(
N2
m−1 − f m(α0) + f m+1(α0)

)
(18)

which gives C(m)2 = N2
m = f m+1(α0)− α0.

Applying equation (2) to |m〉 and using equations (13)–(15) and the value ofNm we obtain
the last equation we wanted. Putting everything together we recover equations (13)–(15) for
m �→ m + 1 and the proof is complete.

Note that equations (13)–(15) define a generaln-dimensional representation for the algebra
in equations (1)–(3). In order to solve it, i.e. to construct the conditions under which we have
finite- and infinite-dimensional representations, we have to specify the functional f (J0). It is
easy to see that if we choose f (J0) = J0 + 1 the algebra given by equations (1)–(3) becomes
with this choice the Heisenberg algebra for A, A† and N = A†A where A = J−, A† = J+

and N = J0. Note that the Casimir operator in equation (4), that in the general case has
eigenvalue equal to −α0, becomes in this case C = A†A − N , which is identically null.
We shall see in the next section that the choice f (J0) = r J0 + s corresponds to a one-
parameter deformed Heisenberg algebra and if we take a functional with linear and quadratic
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terms (besides a constant term) we have a quadratic Heisenberg algebra or a two-parameter
deformed Heisenberg algebra that will be analysed in section 4.

Another very interesting observation is that, as mentioned at the beginning of this section,
the algebraic relations equations (1) and (2) are constructed in such a way that the eigenvalues of
operator J0 are iterations of an initial valueα0 through the function f as shown in equation (13).
Then, the increasing complexity of function f will correspond to an increasing complex
behaviour of the eigenvalues of J0 [8]. In fact, as already shown in [6,7], choosing the logistic
map for f , it could give rise to a chaotic behaviour of the eigenvalue of J0. Moreover, as will
be clear in the next sections, it is this iteration aspect of the algebra that will allow us to find
the representations through the analysis of the stability of the fixed points of the function f

and their composed functions.

3. The linear case

In this section we are going to find the representations for the algebra defined by the relations
given in equations (1)–(3) considering f (J0) = r J0 +s. The algebra relations can be rewritten
for this case as

[J0, J+]r = s J+ (19)[
J0, J−

]
r−1 = − s

r
J− (20)[

J+, J−
] = (1 − r) J0 − s (21)

where [a, b]r ≡ a b − r b a is the r-deformed commutation of two operators a and b.
It is very simple to realize that, for r = 1 and s arbitrary, the above algebra is the Heisenberg

algebra for A, A† and N where A = J−/
√
s, A† = J+/

√
s and N = J0/s. In this case the

Casimir operator given in equation (4) is null. Then, for general r and s the algebra defined in
equations (19)–(21) is a one-parameter deformed Heisenberg algebra and generally speaking
the algebra given in equations (1)–(3) is a generalization of the Heisenberg algebra.

It is easy to see for the general linear case that

f m(α0) = rm α0 + s (rm−1 + rm−2 + · · · + 1)

= rmα0 + s
rm − 1

r − 1
(22)

thus

N2
m−1 = f m(α0)− α0 = [m]r N

2
0 (23)

where [m]r ≡ (rm − 1)/(r − 1) is the Gauss number of m and N2
0 = α0 (r − 1) + s.

Let us search for finite-dimensional representations of the linear Heisenberg algebra.
Our approach is the following: we start from the vacuum state |0〉 and apply repeatedly the
operator J+ arriving, for specific values of α0, r and s, eventually at J+|n − 1〉 = 0 for an
n-dimensional representation. From equation (14) we see that the set of parameters providing
an m-dimensional representation, using equation (23), is computed from

N2
0 = α0 (r − 1) + s > 0

N2
1 = [2]r N

2
0 > 0

· · ·
N2
m−2 = [m− 1]r N

2
0 > 0

N2
m−1 = [m]r N

2
0 = 0.

(24)

The solutions for [m]r = 0 are given by r = exp(2π ik/m) for k = 1, 2, . . . , m − 1 (k = 0
corresponds to the Heisenberg algebra that we are not considering at the moment) but since J0
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is taken to be Hermitian, the only interesting finite-dimensional solution is a two-dimensional
(m = 2) representation with r = −1 and s > 2α0. There is of course a trivial one-dimensional
representation where the weight of the representation is the fixed point α0 = α∗ = s/(1 − r)

and r ∈ (−1, 1) ∪ (1,∞). We have also a marginal uninteresting one-dimensional solution
obtained for r → ∞ and s/r2 = finite.

The infinite-dimensional solutions are more interesting. In this case we must solve the
following set of equations:

N2
m > 0 ∀m m = 0, 1, 2, . . . . (25)

Apart from the Heisenberg algebra given by r = 1, the solutions are

type I : r > 1 and α0 >
s

1 − r
(26a)

or

type II : −1 < r < 1 and α0 <
s

1 − r
(26b)

with matrix representations

J0 =



α0 0 0 0 . . .

0 α1 0 0 . . .

0 0 α2 0 . . .

0 0 0 α3 . . .
...

...
...

...
. . .


 J+ =




0 0 0 0 . . .

N0 0 0 0 . . .

0 N1 0 0 . . .

0 0 Nø
2 0 . . .

...
...

...
...

. . .


 J− = J †

+ .

(27)

Note that for type I solutions the eigenvalues of J0, as can be easily computed from
equations (13) and (10), go to infinity as we consider eigenvectors |m〉 with increasing value
of m. Instead, for type II solutions the eigenvalues go to the value s/(1 − r), the fixed point
of f , as the state |m〉 increase.

The reason for this asymptotic behaviour of the eigenvalues of J0 is simple. It is clear
from equations (13) and (10) that the eigenvalues of J0 are given by the functional iteration
of f (α) = r α + s for the starting number α0. Moreover, the stability of the fixed point of
f (α) is directly related to the asymptotic behaviour of the eigenvalue of J0. If the fixed point
of f (α) is stable (−1 < r < 1) or unstable (r > 1) the eigenvalues of J0 go to the fixed
point α� = s/(1 − r) or to infinity respectively since they are given by iterations of α0 through
the function f . Finally, we mention that the allowed values of α0 in equation (26) are purely
algebraic conditions that originate from our choice that the representations of the algebra have
always a lowest-weight vector.

The interesting and certainly unexpected connection we have just analysed between the
infinite-dimensional representations of the linear Heisenberg algebra and the classification of
the different types of fixed point and their stability will become more relevant in the next
section, where we shall consider the quadratic case f (J0) = q J 2

0 + r J0 + s. In this case, even
the finite-dimensional representations will be connected to the fixed-point analysis through the
attractors of f .

It is interesting to note that in equation (23) we obtained, considering the linear case, the
well known Gauss number of m as

N2
m−1

N2
0

= rm − 1

r − 1
= [m]r . (28)

It is possible to look at the above equation the other way round and to define a general
Gauss number [m]general for the case of arbitrary f as

[m]general ≡ N2
m−1

N2
0

= f m(x)− x

f (x)− x
. (29)
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Of course, this definition gives

[m]general −→ m for f (x) = x + s

[m]general −→ [m]r for f (x) = r x + s.
(30)

Finally, it is easy to see that there is a direct relation between the linear Heisenberg algebra
given in equations (19)–(21) and the standard q-oscillators. In fact, defining

J0 = q2N α0 + s [N ]q2 (31)

J+

N0
= a† qN/2 (32)

J−
N0

= qN/2 a (33)

we see that a, a† and N satisfy the usual q-oscillator relations [3]

a a† − q a† a = q−N a a† − q−1 a† a = qN

[N, a] = −a [N, a†] = a†.
(34)

Note that the Heisenberg algebra is obtained from (31)–(33) for q → 1 and α0 = 0.

4. The nonlinear case

In this section we consider the algebra defined by equations (1)–(3) for f (x) = t x2 + r x + s.
In this case the algebra becomes

[J0, J+]r = t J+ J
2
0 + s J+ (35)[

J0, J−
]
r−1 = − t

r
J 2

0 J− − s

r
J− (36)[

J+, J−
] = −t J 2

0 + (1 − r) J0 − s. (37)

Of course, for t = 0 we recover the linear (or r-deformed) Heisenberg algebra given in
equations (19)–(21) and for t = 0 and r = 1 the standard Heisenberg algebra.

We focus now on the analysis of equations (6) and (12)–(15), aiming to find the finite- and
infinite-dimensional representations of the above quadratic Heisenberg algebra. Following an
observation made at the end of the previous section we shall find the algebra representations
through the analysis and the stability of the fixed points of f (x) = t x2 + r x + s and their
composed functions.

One clear way to do this is to perform a graphical analysis of the function f . Let us plot
y = f (x) together with y = x. Where the lines intersect we have x = y = f (x), so the
intersections are precisely the fixed points. Now, for a point x0, different from the fixed point,
in order to follow its path through iterations with the function f we perform the following
steps:

(1) move vertically to the graph of f (x);
(2) move horizontally to the graph of y = x and
(3) repeat steps (1), (2) etc (in figure 1 is shown the example of the Heisenberg algebra, where

f (J0) = J0 + 1).

There are three cases to be analysed: (i) � < 0, (ii) � = 0 and (iii) � > 0, for
� = (r − 1)2 − 4 t s. In the first case there is no fixed point and it is easy to see by a graphical
analysis that only t > 0 corresponds to infinite-dimensional representations (N2

m �= 0, ∀m,
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0
α0 α

f( )α

1

Figure 1. Iterations of α0 for the Heisenberg algebra. The
eigenvalues αn increase by a constant factor as n increases.

m ∈ Z+) having lowest weight states as desired (see figure 2(a)). Then, case (i) provides
infinite-dimensional representations with lowest weight α0 for the value of the parameters

t > 0 : (r − 1)2 − 4 t s < 0 and α0 ∈ R. (38)

In case (ii), t > 0 as well and we have one fixed point given by α� = (1 − r)/2t . This
fixed point corresponds to a trivial one-dimensional representation of the algebra for α0 = α�

sinceN0 = 0. Besides this trivial one-dimensional representation we have for case (ii) infinite-
dimensional representations with lowest weight α0 for the set of parameters (see figure 2(b))

t > 0 : (r − 1)2 − 4 t s = 0 and α0 ∈ R α0 �= (1 − r)/2q. (39)

Case (iii) is less trivial. In this case it is also possible to have attractors of period 1, 2, 4, . . .
and even a chaotic region in the space of parameters (t , r , s, α0). Thus, there are regions in
this space associated with finite- and infinite-dimensional representations. In what follows,
we analyse completely the cases of attractors of periods 1 and 2 and give an example of the
chaotic behaviour of the algebra. For shortness, the analysis from now on will be done only
for t > 0; the t < 0 behaviour is similar, with no conceptually significant difference.

We recall that a fixed point α�, where by definition α� is the solution of the equation
α� = f (α�), is stable if |f ′(α�)| is smaller than unity and is unstable if it is greater than unity.
For case (iii) the fixed points are

α�± = 1 − r ± √
�

2 t
. (40)

The fixed point α�+ is always unstable and computing the derivative of f at α�− we have that
α�− is stable for a set of t , r and s such that 0 < � < 4 (we stress again that this analysis is
for t > 0). For this set of (t , r , s) we must search for the region of α0 that corresponds to
lowest-weight states. It is easy to realize that the region α�− < α0 < α�+ has to be eliminated
since it does not correspond to a representation with lowest-weight state; i.e., there will always
exist an n > 0 such that αn < α0 if α�− < α0 < α�+.

For the allowed values of α0 corresponding to infinite-dimensional representations with
lowest-weight state, i.e. −∞ < α0 < α�− and α0 > α�+, there are two types of asymptotic
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α

f( )α

α00

(a)

α

f( )α

0 α∗ α0

(b)

α

f( )α

α∗
+α∗

−αm0 αb
0 αa

0

(c)

Figure 2. (a) Iterations of α0 for case (i): � < 0. As is easily
seen, αn goes to infinity as n → ∞. This figure was plotted for
the values t = 1, r = −1.5 and s = 2.5. (b) Iterations of α0
for case (ii): � = 0. Also in this case, for α �= α�, αn goes
to infinity as n → ∞. This figure was plotted for the values
t = 1, r = −2 and s = 9/4. (c) Iterations of α0 for case (iii):
0 < � < 4. αa0 is a starting point belonging to the regions
α0 < αm or α0 > α�+, whose future iterations tend to infinity;
αb0 is a starting point belonging to the region αm < α0 < α�−,
and whose future iterations tend to the fixed point α�−. This
figure was plotted for the values t = 0.8, r = −4 and s = 6.

(This figure is in colour only in the electronic version, see
www.iop.org)

behaviour for the eigenvalues of J0. They can go to infinity or go to the fixed point α�−. In
order to identify these two regions consider the point f (α�+). There is another point, denoted
αm, that gives f (α�+), i.e. f (αm) = f (α�+) = α�+; this point is given by

αm = −1 − r − √
�

2 t
. (41)

It is easy to verify that the set of (t , r , s, α0) such that

0 < � < 4 and

{
(a) − ∞ < α0 < αm or α�+ < α0 < ∞
(b) αm < α0 < α�−

(42)

corresponds to infinite-dimensional representations where the asymptotic eigenvalues of J0 in
case (a) go to infinity and in case (b) go to the asymptotic value α�− (see figure 2(c)). Moreover,
� > 0 and α0 = α�− or α0 = α�+ correspond to the trivial finite one-dimensional representation.
Note that in case (b), equation (42), future iterations of α0 (that are always bigger than α0)
will not increase monotonically. This is a specific example where a non-monotonic function
f presents a non-monotonic behaviour of iterations of α0, with a consistent vacuum |0〉.
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Figure 3. Histogram of the chaotic bands corresponding to the points t = 1, r = and
s = −1.543 591.

The next step is to consider the set of parameters (t , r , s, α0) such that the function
f (α) = t α2 + r α + s has an attractor of period 2. This will permit us to find infinite-
dimensional representations where the asymptotic behaviour of the eigenvalues of J0 is infinity
or an attractor of period 2. Moreover, when the weight of the representation is the lowest value
of the attractor there will be a set of parameters (t , r , s) corresponding to a two-dimensional
representation.

In order to perform that analysis we must study the fixed points of f 2(β) ≡ f (f (β)), i.e.
the points β� satisfying β� = f 2(β�) that are different from the previous one-cycle (attractors
of period 1). They are

β�± = −1 − r ± √
�1

2 t
(43)

where �1 = −3 − 2 r + r2 − 4 t s. Since the fixed points of f 2, β�±, have the same tangent
it is sufficient to analyse the stabilization region for one of them. It is simple to see that this
region is given by the set (t , r , s) such that 4 < � < 6. We see that for � = 4 the one-cycle
solution loses stability and starts the stabilization region for the two-cycle solution. Then, the
set of (t , r , s, α0) such that

4 < � < 6 and

{
(c) − ∞ < α0 < αm or α�+ < α0 < ∞
(d) αm < α0 < β�−

(44)

corresponds to infinite-dimensional representations where the asymptotic eigenvalues of J0 in
case (c) go to infinity and in (d) go to the lowest value of the stable two-cycle attractor with
values β�±.

In this case there is also a set of parameters, for� > 4, corresponding to a two-dimensional
representation. Note that if we take the weight of the representation as

α0 = β�− = −1 − r − √
�1

2 t
(45)

we have a two-dimensional representation with matrix representation given by

J0 =
(
β�− 0
0 β�+

)
J+ =

(
0 0
N0 0

)
J− = J †

+ (46)
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where N0 is computed for � > 4 and α0 given in equation (45).
Clearly, for � > 6, we will have other cycles, of length 4, 8, . . . , 2k . . . , entering the

chaotic region and displaying, in the region (αm, α�+), exactly the same scenario the logistic
map shows. To give an example of the chaotic region one chooses a point in the parameter
space presenting two chaotic bands. This point corresponds to the numeric values t = 1,
r = 2 and s = −1.543 591 (see figure 3). Actually, there is a whole surface in the parameter
space (t, r, s), in which this point is included, exhibiting these two chaotic bands. Clearly also,
chaos implies infinite-dimensional representation and, for the example above, the eigenvalues
of J0 belong, mainly, to the α-region limited by the two chaotic bands shown in figure 3. The
frequency of a specific eigenvalue is given by the relative height of the band at this value. If
we call the lowest value of α of the two bands αmchaos, the allowed range for the lowest weight
values of possible representations in this example is α0 ∈ (αm, αmchaos).

In the case where t < 0 the whole region outside the interval (αm, α�+) is not allowed, in
contrast to the case t > 0. The lowest fixed point is always unstable, also in contrast to the
case of positive values of t , where the highest fixed point was always unstable, but the general
sequence of attractors and chaotic regions is exactly the same, as is well known. A study of a
particular case of t < 0, the logistic case, was made in [6, 7].

5. Final comments

In this paper we have presented the first steps towards the complete analysis of the algebra
described by the relations in equations (1)–(3). This algebra can be rewritten for the polynomial
f (J0) = ∑n

i=0 aiJ
i
0 as

[J0, J+]a1
= a0J+ +

n∑
i=2

aiJ+J
i
0 (47)

[
J0, J−

]
a−1

1
= −a0

a1
J− −

n∑
i=2

ai

a1
J i

0J− (48)

[
J+, J−

] = −
n∑
i=2

aiJ
i
0 + (1 − a1) J0 − a0. (49)

The linear case, f (J0) = a0 + a1 J0, corresponds to the Heisenberg algebra for a1 = 1 and
to the a2

1-deformed Heisenberg algebra otherwise. The representation theory has been shown
to be directly related to the stability analysis of the fixed point of the function f and their
composed functions.

The linear and quadratic cases have been analysed in detail. The finite-dimensional
representations correspond to lowest weight being the lowest value of the attractors of period
1, 2, 4, . . . . Moreover, associated with each attractor there is a parameter region providing an
infinite-dimensional representation. We expect that this relation between representations and
stability analysis of the fixed points of f and their composed functions will be the same for
any analytical function f . In fact, in higher-order polynomials there will be the possibility to
have, simultaneously, more than one attractor, each one with its own basin of attraction in the
parameter space. In spite of this, inside one particular basin of attraction the scenario is the
same as analysed here in the nonlinear case.

It is interesting to mention that there are parameter regions corresponding to certain
representations that cannot be smoothly deformed to a representation of Heisenberg algebra.
An obvious example is the so-called logistic algebra where f (J0) = r J0(1 − J0) is chosen
as the logistic map for J0. It is clear that this algebra cannot be deformed to the Heisenberg
algebra even if it is a generalization of it in the sense discussed in this paper.
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Last, but not least, we have the feeling that the approach we have presented in this paper
is, in a certain sense, universal. In this approach we construct the nonlinear generalization of a
given undeformed algebra and its representation theory is directly related to the classification
of the fixed points—and their stability—of a function f (and the composed functions) that
generates the algebra.

In fact, it is possible to construct another iterative algebra as

J0 J− = J− f (J0) (50)

J+ J0 = f (J0) J+ (51)[
J+, J−

] = J0(J0 + 1)− f (J0)(f (J0) + 1) (52)

with Casimir

C = J+ J− + f (J0)(f (J0) + 1) = J− J+ + J0(J0 + 1) (53)

where J− = J
†
+ , J †

0 = J0 and f (J0) is an analytical function in J0. Note that if f (J0) is
the simplest linear functional f (J0) = J0 − 1 we obtain the relations and the Casimir of the
su(2) algebra. It is tempting to investigate, as we did in this paper for the iterative algebra in
equations (1)–(3), the above algebra for more complicated functionals f (J0).
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